Boundary value problems for elliptic integro-differential operators
نویسندگان
چکیده
منابع مشابه
Impulsive Boundary-value Problems for First-order Integro-differential Equations
This article concerns boundary-value problems of first-order nonlinear impulsive integro-differential equations: y′(t) + a(t)y(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0, ∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,
متن کاملBoundary value problems for elliptic operators with singular drift terms
Let Ω be a Lipschitz domain in R, n ≥ 3, and L = divA∇ − B∇ be a second order elliptic operator in divergence form with real coefficients such that A is a bounded elliptic matrix and the vector field B ∈ Lloc(Ω) is divergence free and satisfies the growth condition dist(X, ∂Ω)|B(X)| ≤ ε1 for ε1 small in a neighbourhood of ∂Ω. For these elliptic operators we will study on the basis of the theory...
متن کاملOn boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملA posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations
A posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations Abstract This paper presents constructive a posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations (PDEs) on a bounded domain. This type of estimates plays an important role in the numerical verification of the...
متن کاملElliptic Boundary-Value Problems
In the first part of this chapter we focus on the question of well-posedness of boundary-value problems for linear partial differential equations of elliptic type. The second part is devoted to the construction and the error analysis of finite difference schemes for these problems. It will be assumed throughout that the coefficients in the equation, the boundary data and the resulting solution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 1996
ISSN: 0025-5874
DOI: 10.1007/pl00004536